1) Find the directional derivative of f at the given point in the direction indicated by the angle θ .

a)
$$f(x, y) = x^2 y^3 - y^4$$
, (2,1), $\theta = \frac{\pi}{4}$
b) $f(x, y) = x \sin(xy)$, (2,0), $\theta = \frac{\pi}{3}$
a) $6\sqrt{2}$

b)
$$2\sqrt{3}$$

2) Find the directional derivative of the function at the given point in the direction of the vector \vec{v} .

a)
$$f(x, y) = \ln(x^2 + y^2), (2, 1), \ \vec{\mathbf{v}} = \langle -1, 2 \rangle$$

b)
$$f(x, y, z) = \frac{x}{y+z}$$
, (4,1,1), $\vec{\mathbf{v}} = \langle 1, 2, 3 \rangle$

a)	0	
b)	$-\frac{9}{2\sqrt{14}}$	

3) Find the directional derivative of the function $g(x, y, z) = xye^{z}$ at P(2, 4, 0) in the direction of Q(0, 0, 0).

$$-\frac{8}{\sqrt{5}}$$

- 4) Given the function $f(x, y) = y \ln x$, P(1, -3), and $\vec{\mathbf{u}} = \left\langle -\frac{4}{5}, \frac{3}{5} \right\rangle$ find the following:
 - a) The gradient of f.
 - b) The gradient at the point P.
 - c) The rate of change of f at P in the direction of the vector $\vec{\mathbf{u}}$.

a)
$$\left\langle \frac{y}{x}, \ln x \right\rangle$$

b) $\left\langle -3, 0 \right\rangle$
c) $\frac{12}{5}$

5) Find the maximum rate of change of f at the given point and the direction in which it occurs.

a)
$$f(x, y) = \frac{y^2}{x}$$
, (2,4)
b) $f(x, y, z) = \tan(x + 2y + 3z)$, (-5,1,1)

a)
$$4\sqrt{2}, \langle -4, 4 \rangle$$

b) $\sqrt{14}, \langle 1, 2, 3 \rangle$

6) Find the directions in which the directional derivative of $f(x, y) = x^2 + \sin xy$ at the point (1,0) has the value 1.

$$\theta = \frac{\pi}{2} \text{ or } 2\pi - \cos^{-1}\left(\frac{4}{5}\right)$$

7) Find all points at which the direction of fastest change of the function $f(x, y) = x^2 + y^2 - 2x - 4y$ is $\mathbf{i} + \mathbf{j}$.

All points	on $y = x + 1$
------------	----------------

- 8) Suppose that over a certain region of space the electrical potential V is given by $V(x, y, z) = 5x^2 3xy + xyz$.
 - a) Find the rate of change of the potential at P(3,4,5) in the direction of the vector $\vec{v} = i + j k$.
 - b) In which direction does V change most rapidly at P?
 - c) What is the maximum rate of change at P?

9) If $f(x, y) = x^2 + 4y^2$, find the gradient vector $\nabla f(2, 1)$ and the use it to find the tangent line to the level curve f(x, y) = 8 at the point (2,1).

$$\langle 4,8 \rangle, x+2y=4$$

10) If $g(x, y) = x - y^2$, find the gradient vector $\nabla g(3, -1)$ and the use it to find the tangent line to the level curve g(x, y) = 2 at the point (3,1).

$$\langle 1,2 \rangle, x+2y=1$$